Adaptive Principal Component Analysis Based Wavelet Transform and Image De-noising for Face Recognition Applications

نویسندگان

  • Isra’a Abdul-Ameer Abdul-Jabbar
  • Jieqing Tan
  • Zhengfeng Hou
چکیده

In this paper a novel face recognition approach based on Adaptive Principal Component Analysis (APCA) and de-noised database is produced. The aim of our approach is to overcome PCA disadvantages especially the two limitations of discriminatory power poverty and the computational load complexity, by producing a new adaptive PCA based on single level 2-D discrete wavelet transform using Daubachies filter mode. All face images in ORL database are transformed to JPG file format and are de-noised by Haar wavelet at level 10 of decomposition; the goal is to exhibit the advantage of wavelet over compressed JPG files instead of using origin PGM file format. As a result , our adaptive approach produced good performance in raising the accuracy ratio and reducing both the time and the computation complexities when compared with four other methods represented by standard statistical PCA, Kernel PCA, Gabor PCA and PCA with Back propagation Neural Network (BPNN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Based Image De-noising to Enhance the Face Recognition Rate

In this paper a comparison between face recognition rate with noise and face recognition rate without noise is presented. In our work we assume that all the images in the ORL faces database are noisy images. We applied the wavelet based image de-noising methods to this database and created new databases, then the face recognition rate are calculated to them. Three experiments are given in our p...

متن کامل

Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images

Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...

متن کامل

An Adaptive Method of Image De-noising based on Discrete Wavelet Transform

IJSER © 2013 http://www.ijser.org Abstract — This paper presents the Wavelet based Image De-noising. The search for efficient image De-noising methods is still a valid challenge at the crossing of functional analysis and statistics using discrete wavelet transform. De-noising of stationary images corrupted by Gaussian noise using wavelet techniques is very effective because of its ability to ca...

متن کامل

De-Noising SPECT Images from a Typical Collimator Using Wavelet Transform

Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT ...

متن کامل

A Face Recognition Scheme Based On Principle Component Analysis and Wavelet Decomposition

In this paper, a new face recognition system based on Wavelet transform (HWT) and Principal Component Analysis (PCA) is presented. The image face is preprocessed and detected. The Haar wavelet is used to form the coefficient matrix for the detected face. The image feature vector is obtained by computing PCA for the coefficient matrix of DWT. A comparison between the proposed recognition system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014